REVISED STRUCTURE OF RESORTHIOMYCIN

Makoto Tahara, Takayoshi Okabe, Kazuo Furihata, Nobuo Tanaka, Hideyo Yamaguchi, Toshio Nishimura and Hideo Suzuki

Institute of Applied Microbiology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan

(Received for publication November 7, 1990)

Previously we reported the structure of a new antitumor antibiotic, resorthiomycin (I)¹⁾ with an SCH₃ group at C-6 and an acetyl group at C-1 on the resorcinol nucleus (for numbering system, see Fig. 1). Based on the EI-MS and ¹³C NMR data, Prof. HARUO SETO, University of Tokyo, suggested that the SCH₃ group should not directly bind to the benzene ring and, instead, forms a methylthio ester at C-1 carbon, since the mass spectral fragmentation peak $(M - SCH_3)^+$ of I and the long range ${}^{13}C^{-1}H$ couplings observed between a methyl proton and three carbons (C-1, C-5 and C-6) were not compatible with the proposed structure. Thus, we re-checked the position of the SCH₃ group by determining whether a methyl ester derivative (II) could be formed from resorthiomycin.

A mixture of resorthiomycin (2.5 mg) and sodium methoxide (4.8 mg) dissolved in dry MeOH (240 μ l) was stirred overnight. The mixture was acidified with 50 mM HCl and extracted with ethyl acetate. The extract was purified by silica gel column chromatography developed with CHCl₃-MeOH (200:1) to yield 1.5 mg of II.

The FAB-MS of II revealed the molecular cluster ion peaks at m/z 291 ((M+Na)⁺), 269 ((M+H)⁺) and 268 (M⁺). The ¹H NMR spectral data of II is shown in Table 1 in comparison of I, indicating that the signal of 14-CH₃ has shifted from 2.45 ppm to 3.93 ppm. This change suggests that the -SCH₃ group was replaced by an -OCH₃ group in II. The ¹³C NMR spectrum of II in CDCl₃ revealed the following signals: δ_c 172.4, 160.0, 158.1, 136.8, 118.3, 109.6, 106.0, 66.7, 51.7, 37.5, 23.9, 21.9, 18.3 and 8.4. The signal of 7-C in I appeared at an extremely low field (198.2 ppm)¹), which is characteristic of the carbonyl carbon in a thio ester. In II, this signal has shifted to higher field (172.4 ppm), also suggesting

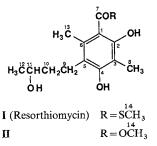


Table 1. Comparison of ¹H NMR spectral data between I and II (400 MHz, CDCl₃).

	I		II	
Proton	Chemical shift (ppm)	Multipli- city	Chemical shift (ppm)	Multipli- city
2-OH	9.80 ^a	s	11.41	s
4-OH	8.0	br s	7.9	br s
8-CH ₃	2.14	s	2.14	S
9-H _A	2.68	ddd	2.72	ddd
9-H _B	2.84	ddd	2.85	ddd
$10-H_{A}$	1.63	dddd	1.63	dddd
$10-H_B$	1.72	dddd	1.72	dddd
11-H	3.75	ddq	3.75	ddq
11-OH	1.7	br s	1.7	br s
12-CH ₃	1.25	d	1.25	d
13-CH ₃	2.55	8	2.45	S
14-CH ₃	2.45	S	3.93	<u>s</u>

^a TMS (0 ppm) was used as an internal standard.

the formation of an carboxylate.

All the data described above indicate that the correct structure of resorthiomycin is S-methyl 2,4-dihydroxy-3,6-dimethyl-5-(3-hydroxybutyl)-thiobenzoate, as shown in Fig. 1.

Acknowledgments

The authors wish to express sincere thanks to Prof. HARUO SETO of our Institute, The University of Tokyo, for his suggestion and critical reading of this manuscript.

Reference

 TAHARA, M.; T. OKABE, K. FURIHATA, N. TANAKA, H. YAMAGUCHI, T. NISHIMURA & H. SUZUKI: Resorthiomycin, a novel antitumor antibiotic. II. Physico-chemical properties and structure elucidation. J. Antibiotics 43: 135~137, 1990